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Principles

Ecosystems are composed of species and plant species
primarily respond to climate.

Dominant trees are £ey:stone species.

The major forest szressors are: drought, fire, pests,
pathogens, climate change, invasives, and exploitation.

Environment and ecosystem ciange never ends; there has
never been a “once upon a time.”




Baseline: Past Forests



Keystone Tree Species

* Douglas-fir (33) * Bigleal maple (21)
 Black cottonwood (31)  * Red alder (21)

* Lodgepole pine (28) * Ponderosa pine (19)

* Westernredcedar (25)  ® Oregon white oak (14)
* Western hemlock (22) Sitka spruce (13)

(Parentheses) = No. of Washington’s 39 counties where found (USDA PLANTS).



source: USDA Forest Service (2017a, 2017b)
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Climate Change



Principles

* Greenhouse gases change the amount of sunlight absorbed by the
atmosphere, changing the weather, which has always been driven by the
transport of heat from the equatorial towards the polar regions.



Balance Balance

|

|

|

|

|

I
Deficit :

Transport | :

& ' |

@ : Heat Heat |

Of Heat GRS . transfer transfer |

E g % I >

© @ !

55 | |

2 |

TS | ,
|

I 1| 1 || |
90 60 30 0 30 60 9C
°North Latitude °South
== Average annual =-—Average annual

source: NASA solar radiation absorbed infrared radiation emitted



Principles

* (limate scenarios are based on science, data, and computzer models.
e Scenarios depend on certain assumptions about Zuman behavior,
mainly, how rapidly greenhouse gases accumulate.



CO2 emissions in CMIP6 scenarios
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Future CO2 emissions scenarios featured in CMIP6, as well as historical CO2 emissions (in black). The shaded area represents the
range of no-policy baseline scenarios. Data from the S5P database; chart by Carbon Brief using Highcharts.



Principles

* (limate change is effectively ireversible at human timescales.



CLIMATE CHANGE SUMMARY (CMIP6)

Variable WESTERN WASHINGTON EASTERN WASHINGTON

Baseline 2040 2060 2100 Baseline 2040 2060 2100
Summer temperature SPF up 3°F up 5°F up 9°F a9 F up4°F up5°F up 9°F
Days above 95°F 2 ¥4 11 18 1 7 10 17
Summer rainfall L W down 8% down 11% down 17%| 5.5in. down 8% down 10% down 15%
Annual precipitation 65 in. down 2% down 3% down 5% 40 in. down 2% down 3% down 6%
Annual snowfall 11in. down 20% down 31% down 56%| 22in. down 10% down 18% down 25%

Baseline era is 1981 to 2010

W WA = Average of Snohomish and Olympics grid cells
E WA = Average of Spokane and Okanogan grid cells

Source: https://www.ipcc.ch/assessment-report/aré/

Values based on SSP2 and SSP3 scenarios, i.e. small GHG emission reductions




Forecast: Drought

* [ncreased atmospheric drought: less rain, less
snow, warmer thus higher vapor pressure deficit

o [ncreased soil drought: less summer rain, less
snow, earlier snowmelt

* Heat stress: higher vapor pressure deficit,
increased but also impaired plant metabolism
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Forests, Drought, and the 2021 Heat Wave

Heat wave in late June 2021
Many locations over 108°F S
(42°C); maxima 118°F (48°C)
Widespread foliage death in W
OR and WA

Multiple conifer species

The “Death Spiral” of drought

source: Mantova et al. 2021

P Xylem

_ ~

tension i




Fo (relative units)

% Electrolyte leakage

100

600

400

200 ¢

20

a0t

100

Photosynthesis

b Plpodry+wet
—@— PSMEdry+wet

+
+ +

Metabolism

(@)

Cell death

(©)

30 40

Temperature (°C)

50

60

source: OSU 2021

C gymno-

sperms

angio-
sperms ®

ferns

lycophytes

bryophytes -

-

-80 -60 -40

D

-20

0

20 40 60 80

Temperature (°C)

woody . e o @o ™ m._ >
perennials | = o ==
herbaceus o o—f a1+
perennials c ot 1 - X

cushion ‘ C 10

plants | NN 1

annuals | | L L L
bryophytes ‘ il Hil-

80 -60 —-40 -20 O 20 40 60 80

Temperature (°C)



Heat Wave Findings

* Heat waves comparable to the 2021 event are likely
under all climate change scenarios

* All our forests are vulnerable, especially ponderosa
and Douglas-fir dominated forests

* Risk factors include species, drought, duration,
slope/aspect, and phenology



Biotic Effects of Climate Change

* Pests and pathogens
— Trees more vulnerable when
stressed by heat, drought, etc.
— Disease may move into areas
with previously unsuitable
climate

* Altered phenology




Future Forest Fire Forecasts

* Effects related to climate change: hotter, drier

* Effects related to management: suppression

* Derivative ecological effects: productivity,
mortality, competition

* Forecasts are based on modeling of these effects
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Habitat Suitability for Major Trees

* Altered suitability for all dominant species

* Changes are species-specilic
— Responses related to climate, physiology, ecological
relationships, disturbance regimes

* Spatial scale exceeds seed dispersal distances
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source: Case and Lawler 2016 7
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Humans and the Forest



Principles: History

* The human relationship to the forest has
historically been one of exploitation or neglect

* Exploitation has focused on harvest, neglect has
focused on preserves

* Neglect has become harmful; the future requires
ecosystem management in all forests



Source of Future Impacts

e Climate change, as discussed earlier
* Changes in forest landscape pattern and age

structure due to
— Land conversion
— Timber harvest
— Fire suppression

* New, non-native pests and pathogens



More People - Land Use Change
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Fire Severity Changes
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source: Hagmann et al. 2021 after Hessburg et al. 2005



Pests & Pathogens

Legend

Years of Initial
Infestation

1901-1920
1921-1940
1941-1960
1961-1980
1981-2000

N\

S N
1981-1880~_ | 1o8h1-
19808, [/ 10do

g\
1891-20001

QZWU

5
1991-2000\./

1891-2000"
,

[

Tree inventory data taken

from the Panbandle National

Forests (Idabo) illustrates the
decline of white pine relative

to its companion species.

White pine blister rust impacts on all 5-needle pines
of western North America (except 2. longaceva)

60
45
30
15

0

Western White Pine

i

Western Larch
60

45
30

15'*\.

1920 1945 1970 1995

0
1920 1945 1970 1995

Douglas-fir Grand Fir/Western Hemlock
60
45
'/\- 30
15 /
0

1920 1945 1970 1995

1920 1945 1970 1995

sources: Schoettle 2019, Neuenschwander et al. 1998




Shaping the Future Forest



Climate Change Adaptation

* The most promising programs include

vision, goals, and tactics
— Vision defines the problem
— Goals define a desired future condition (a

constantly changing target)
— Tactcs are tools especially useful for
achieving goals

SAFEGUARDING OUR LANDS,
WATERS, AND COMMUNITIES:

S PLAN FOR
EEEEEEEEEEEEE

uuuuuuuuuuu



Vision

Manage forests to optimize ecological services

* Priority One: Minimize risks of catastrophic failure

* (reate habitat connectivity on the landscape

* Designate and defend ecological refugia

* [everage disturbance! Thatis the best time to realign
vegetation with climate



Goals

Retain biological diversity (species, genetic, structural)
Protect special ecosystems (aquatic, talus, etc.)
Maintain habitat (fish, game, threatened species)
Provide timber

Control fire (e.g., WUI)

Preserve hydrologic functions

Provide for recreational use

others?



Tactics

* Scientific, e.g. geospatial data and modeling to evaluate
the alternatives and track progress
e [aw, policy, and society, e.g.
® Forest thinning programs

® Assisted migration programs
* (Conservation reserve designation and management

* Existing laws provide for most tactical approaches, but
funding is scarce.
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Conclusions

Washington’s future forests will be much different from
those we have known

They will be hotter, drier, and support less biomass

We have options to manage the changes and minimize
their harm

We have a limited time to develop the science, policies,
regulations, and funding structures to meet this challenge
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